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Improved analysis of the Landau theory of the uniaxial ± biaxial

nematic phase transition

by PRABIR K. MUKHERJEE

Saha Institute of Nuclear Physics, LTP Division, 1/AF Bidhannagar, Calcutta-700
064, India

(Received 12 August 1997; accepted 14 August 1997 )

A phenomenological theory is developed for uniaxial and biaxial nematic phases, based on a
two component tensor order parameter. Phase diagrams are plotted and investigated in the
plane of two thermodynamic parameters. Anomalies in thermal properties are studied in the
vicinity of an isolated four-phase critical point. The temperature dependences of the order
parameter and the thermodynamic quantities are also calculated theoretically for the ® rst time.

1. Introduction of rod-like and plate-like molecules of comparable size
and in comparable amounts also indicates the approachMore than twenty years ago it was shown by Freiser

[1, 2] that with decreasing temperature a nematic liquid of the Landau point. Evidence has been found that the
mixture undergoes a transition to two coexisting uniaxialcrystal consisting of biaxial molecules will have two

successive transitions according to the scheme: isotropic � phases, rather than to a single biaxial phase.
Again, the important study by Alben of binary mix-uniaxial order � biaxial order. The main purpose of

the present paper is to re-establish this prediction in tures [6] included only the hardcore repulsion of rod-
like and plate-like molecules, and obtained a number ofan improved way and to calculate the temperature

dependences of the order parameter and thermodynamic interesting results. For example, the introduction of
plate-like molecules increases the N± I transition temper-quantities which are still lacking.

Interest in the theory of the nematic liquid crystal ature of rod-like molecules. Another result was that, at
a lower temperature, the uniaxial nematic phase canphase was stimulated by the experimental discovery of

the long-predicted biaxial nematic phase by Saupe and undergo a second order transition to a more highly
ordered biaxial nematic phase. Between the two regionscoworkers [3± 5]. They studied the phase diagram

and critical properties of the ternary system potassium N+U and NÕU , Alben’s calculation showed that the two
second order lines between the uniaxial nematic andlaurate± 1-decanol± D2O over concentration ranges where

nematic phases were likely to occur. They showed that biaxial nematic phases form a sharp cusp separating the
rod-like nematic phase N+U and plate-like nematic phasein these limited concentration ranges the following phase

sequence may be observed on heating and on cooling: NÕU , and that the cusp touches the ® rst order isotropic±
uniaxial nematic transition line. The intersection of theisotropic± uniaxial nematic (N+U ) (positive optical aniso-

tropy)± biaxial nematic (NB) ± uniaxial nematic (NÕU ) two second order lines and the ® rst order transition line
forms a special critical point. However, because the(negative optical anisotropy). They observed that an

intermediate NB phase is formed for a certain con- phase diagram which Alben presented in his paper
was the result of a numerical calculation, it is di� cultcentration range while in other ranges a direct ® rst

order N+U ± NÕU transition is seen. The N+U ± NB or to examine the detailed thermodynamic and critical
behaviour in the region between the N+U and NÕUNÕU ± NB transitions appear to be second order.

Experimentally, transitions have been observed that transitions.
Further theoretical investigations [7 ± 10] have pre-seem to land directly from N+U to NÕU via a ® rst order

transition. A few miceller nematic liquid crystals are dicted that a biaxial nematic phase is likely to form as
an intermediate phase between two uniaxial nematicknown where the phase diagrams suggest the existence

of a Landau point on the nematic± isotropic (N± I) trans- phases. These theoretical investigations show that an
isolated critical point is obtained in the phase diagram,ition line. The nematic phases formed can be positive or

negative uniaxial and even biaxial, depending on the where the NB ± N+U and NB ± NÕU phase boundaries meet
a ® rst order N+U ± NÕU line. At this isolated critical pointshape of the micelles. The phase diagram of the mixture
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520 P. K. Mukherjee

the cubic coe� cient of the order parameter in the molecules such that Q
±

22 is zero unless m =0, equation (1)
reduces to the P2 interaction of Maier and Saupe.e� ective Hamiltonian becomes zero. In the present paper

the character of the order is discussed, together with the From the molecular shape of any biaxial object, we
can always choose the frame of reference so that Q

±
2,+1=various thermal properties in the di� erent phases.

The molecules which comprise a typical nematic liquid 0; Q
±

2,0 Þ 0 and real; Q2,2=Q
±

2,
Õ

2 Þ 0 and real. The last
term is zero for axially symmetric molecules. Withoutcrystal (NLC) do not have an axis of rotational sym-

metry. This raises the question of whether any vestige the loss of generality, we may use the following polar
coordinates in the order parameter space by de® ningof the lower molecular symmetry is present in ordinary

nematic liquid crystals, and the possibility of biaxial
Q
±

2,0 = r cos h ; Q
±

2,2 =2 Õ 1/2
r sin h

liquid crystals in which the molecular asymmetry
so thatbecomes manifest [11, 12]. These problems have been

discussed previously in the literature [7± 10]. Freiser S1= r
2=Q

± 2
2,0 +2Q

± 2
2,2 (2 a)

[1] has discussed a generalization of the Maier± Saupe
S2= r

3 cos 3h=Q
±

2,0 (Q
± 2

2,0 Õ 6Q
± 2

2,2 ) (2 b)[13] theory involving an order to biaxial character;
Alben [9] has discussed the corresponding Landau To construct the free energy F, it can be shown that
theory. The present work proposes a generalization of since F must be invariant under rotations its expansion
the Landau theory which contains this order parameter. must be polynomial in the two invariants r

3 cos 3h=S1
Phase transitions from NLC to isotropic liquids (IL) and r

2=S2 . For our model the expansion of the free
are generally weakly ® rst order. It is shown that, in a energy F by considering sixth degree expansion is well
broad region of pressures, the nematic phase should approximated by
possess axial symmetry and be described by a uniaxial
ellipsoid of revolution. Near the isolated critical point a F =

A

2
S1+

B

4
S

2
1+

C

6
S

3
1+

D

3
S2+

E

6
S

2
2+

G

5
S1 S2

narrow region without axial symmetry (biaxial phase)
(3)can exist. Between these phases a second order transition

is possible. Baskakov et al. [14], by extrapolating the In this free energy expansion odd terms of order three
experimental dependence of the speci® c volume discon- and higher are allowed. There are two independent sixth
tinuity on the temperature and pressure, conclude that order terms.
an isolated point exists. As we shall see, the presence of E term introduces the

In this work a generalized Landau theory is given. possibility of a biaxial phase. The parameters A , B, C ,
The main results of this work are: (1) the possibility of D , E and G are phenomenological parameters. As is
a re-entrant uniaxial phase with decreasing temperature, usual for the Landau theory, we assume that A is linear
below the biaxial phase; (2) the characterization of the in temperature. Instead of considering only A (temper-
order of the di� erent transitions; (3) the characterization ature) as the controllable variable, we will now construct
of thermal properties near the critical point. the phase diagrams as functions of A and D. The physical

meaning of D will be discussed elsewhere. It is readily
2. Landau theory veri® ed that the structure of equation (3) implies all of

The basis of the Landau theory is the assumption that the major features of the phase diagram.
there is a free energy F which can be regarded as an The minimization of F leads to three possible stable
analytic function of an appropriate order parameter phases:
whose value is determined by minimizing F. We choose (1) Phases II (N+U ) and III (NÕU ) corresponding to
the order parameter [1] Q

±
2,0=Q and Q

±
2,2=0, associated with the

extremum condition
Q lm=�

m ¾
D

l
m ¾ m Q

±
lm (1 )

A +DQ
±

2,0+BQ
± 2

2,0+GQ
± 3

2,0 +CQ
± 4

2,0 =0 (4 )

where the D
l
m ¾ m are the elements of the transformation (2) Phase IV (NB ), with Q

±
2,0 Þ 0, Q

±
2,2 Þ 0, associated

matrices of the spherical harmonics, Y lm , under rotation. with the conditions
The Q lm are molecular parameters which transform under
rotation as the Y lm . The ground state of a system with
pairwise interaction is one in which all the molecules have

A +
B

2
S1+

C

2
S

2
1+

G

5
S2=0

D

3
+

E

3
S2+

G

5
S1=0 H (5 )the same orientation. This is easily seen if one uses for the

Q lm a Cartesian representation in which this e� ective
q̀uadrupole’ is a real symmetric matrix of zero trace. The
isotropic state with Q

±
lm=0 for all m , is always an Phases II and III di� er only in the sign of the order

parameter Q
±

2,0 . Their symmetry is characterizedextremum of free energy F. For l=2 and with symmetric
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521Uniaxial± biaxial nematic phase transition

by rotational elements which are three times To construct the phase diagram (1) the ® fth order
term F in the free energy is retained and A and D aresmaller than in the case of a symmetric phase.

The symmetry group of phase IV is a subgroup both linear functions of temperature. To bring the biaxial
nematic phase into reach, the uniaxial nematic temper-of index 2 of the symmetry group of phases II and

III. As shown in the ® gure they result from a ® rst ature range should be reduced, possibly by lowering the
value of |D |. The above condition is identical with theorder transition I± II or I± III.

In the limit Q � 0, the stability conditions of phases requirement that Q be real. The equation for the phase
transition line isof type II reduce to the contradictory inequalities F2 > 0,

F2 < 0 indicating that the transition from a symmetric
2D

2 Õ 9AB =0 (12)
phase I to phases II and III is possible only at an
isolated critical point A =0, D =0 (Landau condition represented by the solid line 1 in the ® gure.

The experimental re-entry phase behaviour [3, 16] is[15]). The transitions I± II and I± III are second order
only at the Landau critical point de® ned by quite di� erent from the phase diagram shown in the

® gure. In a system of the type considered above and
A =F1 (Q =0 ) =0 and D =F2 (Q =0 ) =0 (6 )

shown in the ® gure, the ground state is an ordered
where nematic phase. In contrast, for the re-entry transition

system, the ground state is an isotropic phase.
Additionally, in ® gure 1, the biaxial nematic phase forms
an open area, but in the re-entry system the biaxial

F1=qF/qS1=
A

2
+

B

2
S1+

C

2
S

2
1+

G

5
S2=0

F2=qF/qS2=
D

3
+

E

3
S2+

G

5
S1=0 H (7 )

region becomes narrow at lower temperatures and one
can expect it to close somewhere.

This comparison indicates that the underlying inter-
Now from expressions (5) it is clear that in the case of action is di� erent for the two cases. Since the equilibrium
phase IV the likelihood of the second order transition state is determined by the competition between entropy
from a symmetric phase is no higher than at an isolated and energy, the re-entry phase diagram re¯ ects a more
point in the phase diagram. The coordinates of this complex dependence of the entry on orientation. The
point in the diagram are also given by the intersection model considered here may be modi® ed to include the
of the lines A =0, D =0. possibility of re-entrant behaviour.

The stability conditions for phase IV are The phase transition from uniaxial nematic to biaxial
nematic is determined from our calculations to be aF11F22 Õ F12F21 > 0, F11 > 0 (8)
second order transition. In the ® gure the two second

where, order lines form a sharp cusp which separates the N+U
and NÕU phases and forms a special critical point. These

F11 =
B

2
+CS1 , F22=

E

3
, F12 =F21 =

G

5
results support experimental observation [3± 5, 16, 17].

In the vicinity of the critical point, they reduce to the
inequalities

D = ( 25BE Õ 6G
2
) >0, B >0 (9 )

Near the boundary between the isotropic and uniaxial
phases we ® nd from equation (4) that

Q =
1

2B
[ Õ D Ô (D

2 Õ 4AB)
1/2] (10)

The condition of p̀roximity’ in an isotropic phase,
deduced from equation (4), means that A ~D

2. The
stability condition d2

F/dQ
± 2

2,2 >0 shows that at the
boundary with the isotropic phase we have Q >0 for Figure 1. Phase diagram of biaxial ± uniaxial transitions near

an isolated four phase critical point (A =D =0 ) . TheD <0 and Q <0 for D >0. The stability boundary of
dashed lines represent second order phase transitionsphases II and III is provided by the inequality
between biaxial phase IV (NB ) and the uniaxial phases IId2

F/Q
± 2

2,0 >0 which is explicited by (N+U ) and III (NÕU ). The continuous line 1 represents ® rst
order phase transitions between isotropic and uniaxialÕ D

2 Õ 4AB =0 (11)
phases. The continuous line 2 represents the stability of
phases II and III.represented by line 2 in the ® gure.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
1
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



522 P. K. Mukherjee

Now the solution of the system (5) can be obtained with a liberation of the latent heat
near the Landau critical point by the approximate

q =Õ (5D /6G )T (qA/qT )
expressions

+[ Õ (5A/6G ) + ( 25/18 ) (BD /G
2
)]T (qD /qT ) (19)

S1=
1

P
( 2GD Õ 5EA) S2=

1

P
( 3GA Õ 5BD ) (13) The thermal properties near the critical point can be

investigated using expansion (3). At the critical point
where, itself the heat of transition vanishes and it rises, away

from this point, along the ® rst order phase transition
described by ~A. If the transition at the critical pointP =

1

5
( 25BE Õ 6G

2
)

is a uniaxial phase, the speci® c heat CP increases abruptly
by an amountSince S1 and S2 are linear with respect to A and D , but

are of di� erent order with respect to Q , phase IV may
DCP=

T

2B A qA

qT B
2

(20)exist only inside the part of the phase diagram bounded
by the dotted lines in the ® gure, whose equations are

If the transition is from isotropic to biaxial phase the
5BD Õ 3GA Ô 30P (Õ A/B)

3/2=0 (14) change is

and, consequently, the width of the region of existence DCP=C
biaxial
P Õ C

isotropic
P

of phase IV in the (A, D ) diagram is of the order of t
3/2,

where t is the distance from the critical point in the =
T

180D
[ 15E (qA/qT )

2 Õ 12G (qA/qT ) (qD /qT )
diagram (when the width of the biaxial region has shrunk
to zero, leaving a ® rst order N+U ± NÕU transition). The +10B (qD /qT )

2] (21)
lines de® ned by equation (14) are the boundaries of the

The positive de® nite nature of the quadratic form ofregion where S1 and S2 are real for a biaxial phase and
equation (21) follows from the conditions of stability (9)represent the loss of stability of uniaxial phases.
of the biaxial phase. Near the point A =D =0, theConsequently, second order phase transitions occur on
abrupt change in the speci® c heat at the boundarythese lines. Finally, we can give the approximate expres-
between the biaxial and uniaxial phases ission for the order parameter components in phases II

and III, which is given by equation (10), and in phase DCP=C
biaxial
P Õ C

uniaxial
P

III:

=
T

5BD C 3G (qA/qT ) Õ 5B A qD

qT B D2

(22)
Q =Ô C (Õ A/B)

1/2+
1

2B
(D +5D(Õ A/B)D (15)

3. ConclusionLet us note that the symmetry of phase IV is always
Experimental indications for the existence in nematiclower than the symmetries of phases II and III.

liquid crystals of a phase transition from a uniaxial to aNear the boundary with the biaxial phase, where
biaxial phase have been previously reported. Accurate

A ~D , the expression for the order parameter of uniaxial
measurements of all order parameters and of the speci® cphases is
heat in the neighbourhood of the transition temperature

Q =y1+y2+y3+ . . . (16) are still lacking; the theories proposed previously were
still undeveloped. The present work provides theoretical

with calculations for both the order parameters and the
speci® c heat for the ® rst time.

It is useful to make a comparison between the Landau
theory of nematic liquid crystals presented here and the
earlier theories of Freiser [1, 2], Alben [9] and Straley

y1=Ô (Õ A/B)
1/2

y2=
1

2B
(D +5Dy

2
1 )

y3= ( 1/8B
2
y1 )

Ö [D
2+30DDy

2
1+125D

2
y

4
1 Õ 4B (C +E )y

4
1] H [10]. The work of Freiser and Alben assumed a second

rank tensor as the order parameter and this was allowed
for in our theory. But the phase diagram of the ® gure is

(17) slightly di� erent from the phase diagram of earlier works.
In the present diagram we have indicated the actualWhen the biaxial phase is absent, a ® rst order transition
stability limit of all the phases. The temperature depend-between the two uniaxial phases occurs along the line
encies of the order parameters have been calculated in
all the phases; this was absent in Alben’s work. TheA = ( 5BD /3G ) Ô (10/9 )

1/2
(D /G )

1/2 (18)
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